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Abstract. A combinatorial method to calculate total level densities from an arbitrary single-particle level
scheme is presented. Parity, angular momentum, pairing correlations as well as collective enhancements are
explicitly treated. This method is employed using single-particle level schemes obtained from Hartree-Fock-
Bogoliubov calculations based on the Gogny effective interaction. Sixty five even-even nuclei with masses
26 ≤ A ≤ 250 are considered. Rather good agreements are obtained when comparing our predictions with
experimental data for energies of the order of the neutron binding energies and for low excitation energies
where discrete levels are experimentally observed.

PACS. 24.10.Pa Thermal and statistical models – 21.60.Jz Hartree-Fock and random-phase approxima-
tions – 21.10.Re Collective levels

1 Introduction

Calculations of cross-sections in the framework of statisti-
cal or pre-equilibrium models of nuclear reactions require
the knowledge of various excited levels of the nucleus.
From the analysis of the first discrete levels that can be
experimentally observed, it is well known that their mean
spacing decreases exponentially when the excitation en-
ergy increases. In other words, the total number of excited
levels up to a given excitation energy U increases expo-
nentially with U [1,2]. Therefore, above a few MeV of
excitation energy, the number of excited levels is so large
that it is impossible to track each of them individually.
Consequently, the only tractable approach is statistical in
nature and consists in considering a level density function.

Many theoretical and empirical studies have been con-
ducted during the past sixty years to provide either ana-
lytical expressions or numerical evaluations for both par-
ticle-hole (p-h) or total level densities (LDs). Concerning
p-h LDs, analytical expressions obtained within the equi-
distant spacing model [3–7] are generally employed even
if more refined expressions accounting for shell or pair-
ing effects [8–10] as well as more fundamental approaches
[11–15] are available. The same remark hold for total LDs.
Many theoretical approaches based on combinatorial tech-
nics [16–18], shell model Monte Carlo methods [19–21],
spectral distribution calculations [22,23] or other realis-
tic statistical methods [24–28] have been developed. How-
ever these rigorous methods are generally too complex to
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be used extensively in practical applications, and instead,
rather simple [29–31] or more refined [32–35] analytical ex-
pressions depending on adjustable parameters are general-
ly prefered. The main problem is that the amount of data
available to optimize the key parameters is very limited.
Therefore, extrapolating these parameters, as functions of
energy or mass number for instance, is questionable, unless
these extrapolations rely on theoretical approaches whose
predictive power is well established.

One of the most powerful theory in nuclear-structure
studies is the Hartree-Fock-Bogoliubov (HFB) mean-
field method [36,37] implemented with the finite-range,
density-dependent Gogny effective interaction (D1S) [38].
This mean-field method and its extensions have been suc-
cessfully employed in various fields of nuclear structure
[39–46], in particular for predicting collective levels at low
excitation energies [47–49] and shape coexistence pheno-
mena [50]. However, considering the number of excited lev-
els that already exists for a few MeV of excitation energy
(several millions for actinides at U ≈ 6 MeV for instance),
it is clear that a complete and rigorous microscopic calcu-
lation of each level is intractable within reasonable compu-
tational time. Therefore, one has to consider an alternative
method, which, on the one hand, exploits the results from
the HFB + D1S method, and, on the other hand, enables
us to calculate LDs with good accuracy from low up to
high excitation energies.

The goal of this article is to show that a combina-
torial approach can fulfill these two conditions, provided
that a few simplifying assumptions are made. For conve-
nience, our present study is restricted to even-even nuclei
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all assumed with mirror axially symmetric shapes. Enfor-
cing mirror axially symmetric shape enables us to define
both the projection of the total spin of the nucleus on its
symmetry axis, and its parity. Thus, calculating LDs as
functions of excitation energy, spin and parity becomes
feasible.

In sects. 2 and 3, we describe the models and methods
we use to perform combinatorial level density calculations.
We first generalize the combinatorial approach of ref. [7] to
account for the spin projections and parities of the single-
particle spectra. We then describe the way we include col-
lective effects and pairing correlations, and finally derive
level densities. Section 4 is devoted to the discussion of the
ingredients needed to perform the actual LDs calculations.
We briefly describe how the single-particle and single-hole
states are obtained using the HFB + D1S method, and dis-
cuss the information (i.e., vibrational states and moments
of inertia) used to account for collective effects. Our pre-
dictions are finally compared in sect. 5 with experimental
data on level densities for excitation energies close to the
neutron binding energy Bn. We also show that our results
reproduce reasonably well the energy dependence of the
cumulated spectra built from discrete levels observed for
excitation energies much lower than Bn.

2 Combinatorial method in the intrinsic frame

This section is devoted to the description of nuclear ex-
citations in the intrinsic frame of coordinates. More pre-
cisely, we present the combinatorial method employed to
calculate state densities (SDs)1. We first describe what
we call particle-hole (p-h) state densities and also explain
how these are calculated. We then consider the vibrational
states which are here viewed and treated as a second ca-
tegory of intrinsic states.

2.1 Intrinsic particle-hole state densities

The starting point of our method is the formalism pre-
sented in ref. [7]. In this basic paper, it has been shown
that, within the Independent Particle Model (IPM) frame-
work, the values of the p-h SDs as a function of excitation
energy can be deduced from the grand partition function
Z expressed in terms of the energies of the single-particle–
single-hole states of a nucleus. In order to calculate SDs as
functions of excitation energy, spin projections and par-
ity, we have generalized the aforementioned combinatorial
method as is now described.

2.1.1 Basic definitions

We must first point out, that a clear-cut distinction bet-
ween particles and holes is possible only if pairing corre-

1 The only difference between SDs and LDs is that the state
densities depend on the projections of spins on the symmetry
axis in the intrinsic frame of the nucleus, whereas level densities
are expressed in terms of the nucleus spin J , in the laboratory
frame.

lations are neglected. In a first step, we therefore ignore
such correlations. These will be included later on (sub-
sect. 3.2) in an approximate manner to produce our final
predictions.

A mirror axially symmetric nucleus may be represen-
ted by two sets of single-particle states (one for the protons
and the other for the neutrons). Each individual state is
characterized by its energy ε, angular-momentum projec-
tion m (i.e., projection of the spin on the intrinsic sym-
metry axis of the nucleus) and parity p. Following closely
the notations adopted in ref. [7], we first define the single-
particle–single-hole states as

ε1
i = επ

Fπ+i − επ
Fπ

m1
i = mπ

Fπ+i

p1
i = pπ

Fπ+i


 , i = 1, ..., I1 , (1)

ε2
i = επ

Fπ
− επ

Fπ−i+1

m2
i = −mπ

Fπ−i+1

p2
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Fπ−i+1


 , i = 1, ..., I2 , (2)

ε3
i = εν

Fν+i − εν
Fν

m3
i = mν

Fν+i

p3
i = pν

Fν+i


 , i = 1, ..., I3 , (3)

ε4
i = εν

Fν
− εν

Fν−i+1

m4
i = −mν

Fν−i+1

p4
i = pν

Fν−i+1


 , i = 1, ..., I4 , (4)

for proton particles, proton holes, neutron particles and
neutron holes, respectively.

In eqs. (1)-(4), Fπ (respectively Fν) is an index for the
last occupied proton (respectively neutron) state in the
ground state of a nucleus. The minus signs appearing in
the definition of the holes’ spin projections enable us to
take into account the fact that when a particle-hole excita-
tion is considered, the contribution of the hole to the total-
spin projection M of the nucleus is opposite to that of
the state on which the hole has been created. Finally, the
indexes I1,..., I4 denote the number of discrete states con-
sidered for each sets of single-particle–single-hole states.
In pratice, I2 = Z and I4 = N for a nucleus with Z pro-
tons and N neutrons while I1 and I3 are restricted by
the maximum excitation energy up to which one is inter-
ested. However, we keep the Ik indexes in the equations
for convenience.

We then consider a nuclear excited state built from in-
dependent particle-hole excitations. A state with N1 pro-
ton particles, N2 proton holes, N3 neutron particles and
N4 neutron holes is labeled as N = (N1, N2, N3, N4). Us-
ing the notations introduced in eqs. (1)-(4), the state den-
sity ρN (U,M,P ) for a given configuration N , a given ex-
citation energy U , a given spin projection M and a given
parity P is the number of solutions per unit energy of the
set of equations

U =
4∑

k=1

Ik∑
i=1

nk
i εk

i , (5)
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M =
4∑

k=1

Ik∑
i=1

nk
i mk

i , (6)

P =
4∏

k=1

Ik∏
i=1

(pk
i )nk

i , (7)

Nk =
Ik∑

i=1

nk
i , k = 1, 2, 3, or 4, (8)

where nk
i = 0 or 1 if the state i is empty or occupied,

respectively.

2.1.2 Combinatorial formalism

To formally determine the total number of solutions of
eqs. (5)-(8), we define the generating function Z:

Z(x1, x2, x3, x4, y, t) =
4∏

k=1

Ik∏
i=1

(
1 + xk pk

i yεk
i tm

k
i

)
. (9)

This generating function is a straightforward generaliza-
tion of that used previously in ref. [7] to account not only
for energy but also for spin projection and parity. Indeed,
the variables xk, (k = 1, ..., 4) enable us to count the num-
ber of particles and holes, y enables us to keep track of the
excitation energies and t of the spin projections. Z can be
expanded in powers of xk writing

Z(x1, x2, x3, x4, y, t) =
∑
N

FN (y, t)
4∏

k=1

xNk

k , (10)

the symbol N denoting again any integers combination
(N1, N2, N3, N4). If we furthermore expand the function
FN (y, t) into powers of y and t writing

FN (y, t) =
∑
U

∑
M

∑
P=−1,+1

CN (U,M,P ) yU tM , (11)

it is then trivial that the coefficients CN (U,M,P ) are ex-
actly the numbers of solutions of eqs. (5)-(8) we are seek-
ing for. To calculate the CN coefficients, we use the math-
ematical tools of ref. [7] and write FN (y, t) as

FN (y, t) =
4∏

k=1

∑
{α(Nk)}

Nk∏
j=1

1
αk

j !

×
[

Ik∑
i=1

(−1)j+1

j
(pk

i )j yjεk
i tjmk

i

]αk
j

, (12)

where the symbol {α(Nk)} means all the integers combi-
nations (αk

1 , αk
2 , ..., αk

Nk
) that satisfy the relation

αk
1 + 2αk

2 + ... + Nk αk
Nk

= Nk. (13)

Following the ensemble theory terminology, we call
such combinations the partitions of Nk.

As can be seen in table 1, the number D(Nk) of such
partitions increases very rapidly with increasing Nk va-
lues. Therefore, to save computing time, these partitions
are calculated once for all.

Table 1. Number D(Nk) of partitions of Nk.

Nk 1 7 13 20 27 34 41

D(Nk) 1 15 101 627 3010 12310 44583

2.1.3 Numerical method

The next step consists in calculating the coefficients CN
simultaneously for all the excitation energies of interest.
For this purpose, the single-particle energies εk

i are first
expressed in terms of an energetic arbitrary unit ε0, writ-
ing

εk
i = νk

i ε0 , (14)

with νk
i as an integer. This transformation enables us to

represent each sum

Sk
j =

Ik∑
i=1

(−1)j+1

j
(pk

i )j yjεk
i tjmk

i

appearing in eq. (12) by the element MSk
j
(n,m, p) of the

matrix MSk
j
, such that

MSk
j
(n,m, p) =

Ik∑
i=1

(−1)j+1

j
δ(n − jνk

i )

×δ(m − 2jmk
i )δ(p − pj

i,k) . (15)

In eq. (15), the factor 2 attached to the term j mk
i makes

it possible to overcome the problem of half-integer values
taken by the spin projections mk

i . Moreover, pj
i,k is defined

by pj
i,k = 1 (respectively 0) if (pk

i )j = −1 (respectively
+1), and δ(x) = 1 if x = 0 and 0 otherwise.

With such definitions and notations, we then define
i) the matrix MP+Q, sum of MP and MQ, by

MP+Q(n,m, p) = MP (n,m, p) + MQ(n,m, p) ,

and ii) the matrix MPQ, product of MP and MQ, by

MPQ(n,m, p) =
∑

i+j=n

∑
k+l=m

MP (i, k, 0) MQ(j, l, 0)

+MP (i, k, 1) MQ(j, l, 1),

for positive parity (p = 0) and by

MPQ(n,m, p) =
∑

i+j=n

∑
k+l=m

MP (i, k, 0) MQ(j, l, 1)

+MP (i, k, 1) MQ(j, l, 0),

for negative parity (p = 1).
Using these techniques, the matrix MFN representing

the function FN in eqs. (11) and (12), reads

MFN =
4∏

k=1

∑
{α(Nk)}

Nk∏
j=1

1
αk

j !

[
MSk

j

]αk
j

.
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Finally, the coefficients CN are obtained as

CN (U,M,P ) = MFN (n,m, p), (16)

where m = 2M , p = 0 (respectively 1) if P = +1 (respec-
tively −1) and where the integer n is deduced from the
relation (

n − 1
2

)
ε0 ≤ U <

(
n +

1
2

)
ε0.

Therefore, the CN (U,M,P ) coefficients we calculate
are not exactly the numbers of solutions of eqs. (5)-(8),
but rather the numbers of solutions of eqs. (5)-(8) in an
energy interval of width ε0 centered around the excitation
energy U .

2.1.4 From the CN (U,M,P ) coefficient to the particle-hole
state density ρN (U,M,P )

The final step consists in deriving the p-h SDs, ρN , from
the CN coefficients obtained from eq. (16). The simplest
definition for ρN reads

ρN (U,M,P ) =
1
ε0

CN (U,M,P ). (17)

However, the problem with eq. (17) is that the state den-
sities ρN turn out to be strongly dependent on ε0. Using
too weak an ε0-value does not lead to smooth state densi-
ties as functions of excitation energy. We therefore employ
another method suggested by Williams [16] to limit the
discretization effects as explained below.

Summing all the CN -values up to a given excitation
energy U , we first obtain the cumulated number of states
NN (U,M,P ) which represents the number of p-h states
with excitation energy E such that 0 ≤ E ≤ U . The p-h
state density defined as

ρN (U,M,P ) =
dNN (U,M,P )

dU
,

can also be written as

ρN (U,M,P ) = NN (U,M,P )
d lnNN (U,M,P )

dU
. (18)

In eq. (18), d lnNN (U,M,P )/dU and NN (U,M,P ) are
deduced from a linear interpolation, over an energy in-
terval of width δU centered on U , of the combinatorial
ln NN (U,M,P )-values. We have checked that the results
obtained in this manner, were not too much sensitive to
the width δU nor to the ε0-value. Except for specific nu-
clei that will be discussed later on, an interval of width
δU = 0.2 MeV is used to determine ρN (U,M,P ). Con-
cerning ε0, we have performed several calculations with
ε0 = 0.5, 0.1, 0.05, 0.01 and 0.001 MeV and we have found
that the value ε0 = 10 keV was the best compromise to
get a reasonable calculation time together with the stabil-
ity of the calculated level densities. Indeed, for ε0-values
lower than 10 keV, the calculated level densities remain

unchanged, while one observes differences for higher ε0-
values. Therefore ε0 = 10 keV has been systematically
adopted (see subsubsect. 5.1.1).

Once these particle-hole intrinsic ρN -values are deter-
mined, the intrinsic state density ρint is then simply ob-
tained by summing the ρN -values for which N1 = N2 and
N3 = N4.

2.2 Intrinsic vibrational state densities

Until now, we have only considered independent (inco-
herent) particle-hole excitations. Nevertheless, nuclei also
display collective excitations which may be viewed as su-
perpositions of coherent p-h excitations. These collective
modes fall into two categories, rotations and vibrations,
which in actual nuclei are often coupled modes. In the
present work, both types of collective excitations are con-
sidered and treated in the adiabatic approximation. More
precisely, we deliberately ignore the underlying p-h struc-
ture of these collective modes and assume that i) the exci-
tation energy in a nucleus involves both non-collective and
collective degrees of freedom, and ii) there exists no inter-
action between collective and p-h states as well as bet-
ween vibration and rotation modes. Since spherical and
deformed nuclei can vibrate, we treat vibrational states in
the intrinsic frame of coordinates as explained below.

We still consider an axially mirror symmetric nucleus,
and use the fact that the vibrational (phonon) states of a
nucleus obey the Bose-Einstein statistics to describe them
with the generalized boson generating function

Zvib(x, y, t) =
∏
λ

∏
µ

+∞∑
N=0

[x y ελµ tµ pλ]N , (19)

where x, y and t enable us to keep track of the number
of bosons as well as of their excitation energies and spin
projections. In this equation, ελµ is the energy of a phonon
with multipolarity λ and spin projection µ (−λ ≤ µ ≤ λ).
Furthermore, pλ = (−1)λ and pλ = (−1)λ+1 for isoscalar
and isovector phonons, respectively.

For spherical nuclei, the energies ελµ are (2λ + 1)-fold
degenerate for a phonon of multipolarity λ and µ takes on
all the integer values between −λ and +λ. In contrast, for
deformed nuclei, the ελµ-values are no longer degenerate.
Also, some µ-values are ruled out for quadrupole modes
as a result of symmetries imposed to nuclear shapes and
collective wave functions [51]. Indeed, only the projections
µ = 0 (β vibrations) and ±2 (γ vibrations) survive for the
λ = 2 mode. Therefore, for quadrupole phonons in de-
formed nuclei, the product over µ in eq. (19) is restricted
to µ = −2, 0 and 2. For other multipoles modes, all pos-
sible µ-values are kept since the symmetries imposed to
nuclear shapes and collective wave functions are already
taken into account for quadrupole modes.

Thanks to the matrix method described in subsect. 2.1,
it is then trivial to calculate the matrix Mvib representing
the partition function Zvib of eq. (19). Furthermore, one
can easily consider a restricted number N of phonons by
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truncating the expansion (19) up to the order xN . This
truncation is an ad hoc mean of accounting for the loss
of collectivity observed in nuclei when the number of cou-
pled phonons gradually increases. In other words, mul-
tiphonon states with N ≥ 3 are weakly collective in na-
ture and usually interpreted in terms of simple admixtures
of uncorrelated p-h excitations. An obvious advantage of
such a truncation thus lies in avoiding double counting.
Of course, one can form any coupling between the various
multipoles considered in the calculation, as it has been ex-
perimentally evidenced [52–63], but the total number of
coupled phonons Ntot will never exceed 3 in our approach.

In summary, we have described the way we compute
separately the two intrinsic (i.e., particle-hole and vibra-
tional) state densities. However, even if we assume that the
vibrational and the particle-hole excitations are indepen-
dent phenomena, a given particle-hole excitation can also
“vibrate” [64]. In other words, we have to fold in the vi-
brational (ρvib) and the intrinsic p-h (ρint) state densities
to deduce the total intrinsic state density ρi∗v(U,M,P ).

3 Level densities in the laboratory frame

This section describes the ways the level densities are built
from the total intrinsic state density ρi∗v. We first explain
how the rotational motion is included. We then describe
various approximations to deal with pairing correlations.

3.1 Restoration of rotational invariance

The level densities are obtained following two methods
tailored to treat separately spherical and deformed nuclei.

3.1.1 Spherical nuclei

If the nucleus under consideration displays spherical sym-
metry, the intrinsic and laboratory frames coincide, and
the level density is trivially obtained through the relation

ρ(U, J, P )=ρi∗v(U,M =J, P )−ρi∗v(U,M =J+1, P ). (20)

3.1.2 Deformed nuclei

For deformed nuclei, rotational motion has to be explici-
tly treated. For an axially mirror symmetric nucleus, ro-
tation takes place around an axis perpendicular to the
nucleus symmetry axis. In this case, any intrinsic state
of specified spin projection K and parity P is the band
head of a set of levels having the same parity P and spins
J = K,K + 1,K + 2, ... if K �= 0, and J = 0, 2, 4, ...
or 1, 3, 5, ... if KP = 0+ or 0−, respectively [65]. These
sequences of levels form rotational bands in which each
member’s energy can be deduced from the band head en-
ergy, provided the difference EJ,K

rot between the energy of

the level JP and that of the band head state KP is known.
The level density for deformed nuclei then reads

ρ(U, J, P ) =
1
2

J∑
K=−J,K �=0

ρi∗v(U − EJ,K
rot ,K, P )

+δ(J even) δ(P=+) ρi∗v(U−EJ,0
rot , 0, P )

+δ(J odd) δ(P=−) ρi∗v(U−EJ,0
rot , 0, P ) . (21)

In the first right-hand side term of eq. (21), the factor
1/2 accounts for the fact that in mirror axially symmetric
nuclei, the intrinsic states with spin projections +K or
−K give rise to the same rotational levels. Moreover, in
the second and third terms of the summation, the symbol
δ(x) (defined by δ(x) = 1, if x holds true, and 0 otherwise)
restricts the rotational bands built on intrinsic states with
spin projection K = 0 and parity P to the levels sequences
0, 2, 4, ... for P = + and 1, 3, 5, ... for P = −.

We have previously labeled the intrinsic band head
state densities on which the rotational bands are con-
structed as ρi∗v (i.e., the density obtained from folding
in ρint and ρvib), but one may, of course, neglect the vi-
brational states and thus use simply ρint to construct rota-
tional bands. In this last case, we can already guess that
ignoring vibrational states will imply an underestimate
of the predicted LDs. It is however interesting to study
both situations in order to estimate the importance of in-
cluding the vibrational states in our level density predic-
tions. Whatever the choice made, pairing effects must also
be taken into account. We thus now focus on the possi-
ble methods that we consider to approximate these latter
effects.

3.2 Pairing correlations

In this section, we only consider intrinsic particle-hole
state densities. It is well known that in order to create a
particle-hole excitation, it is generally necessary to bring
in more energy than the simple difference between the en-
ergy of the last occupied single-particle state and that of
the first empty one. This extra energy is called pairing
energy and corresponds to the fact that a pair of nucle-
ons must be broken before exciting one of its components.
Here, we discuss several ways of including pairing correla-
tions in our model and suggest which one seems to be the
best.

The most often used approximation to deal with pai-
ring correlations consists in assuming that once a pair
has been broken, the nucleus behaves like in the Indepen-
dent Particle Model (IPM). Under such an assumption the
paired state density ρpaired

N (i.e., including pairing effects)
is deduced from that calculated within the IPM framework
(ρunpaired

N , calculated as in subsubsect. 2.1.4) by simply in-
troducing a shift in the excitation energy, such that

ρpaired(U) = ρunpaired(U − ∆) , (22)

with ∆ = 0, δ or 2δ for odd-odd, odd, or even-even nuclei,
respectively. In this approximation, the empirical energy δ
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Fig. 1. Comparison between the empirical pairing energy
δ = 12/

√
A (full line) and the HFB + D1S calculated ∆n

(crosses) and ∆p (circles) values.

is generally assumed to be the systematic odd-even mass
difference in nuclei (i.e., δ ≈ 12/

√
A MeV). However, us-

ing such a shift will certainly lead to underestimating the
state densities for the following reasons:

i) First, particle-hole configurations which only involve
one kind of fermion should only be shifted by δ, even
for an even-even nucleus. In other words, a shift ∆ =
2δ only holds for particle-hole configurations involving
both neutrons and protons.

ii) Second, there might be significant differences between
the neutron and proton pairing energies. In particular,
the pairing energy in nuclei is known to be very weak
near shell closure.

iii) Third, the only states for which pairing effect is sig-
nificant are those which are close to the last occupied
state (Fermi level) in the ground state of a nucleus.
Therefore, particle-hole excitations involving states far
enough from the Fermi level should not be treated with
the empirical shift mentioned above.

iv) Finally, eq. (22) implies that odd-odd nuclei are not
affected by pairing correlations, which turns out to be a
wrong statement if other single-particle states than the
odd one are excited. However, since our present study
is restricted to even-even nuclei, we will not consider
this last point.

A simple solution to these problems is obtained by
solving the HFB equations assuming that the off-diagonal
terms of the pairing field are small. This is a good ap-
proximation to the HFB solutions [39], which provides
single-particle and single-hole states with energies εk

i , spin
projection mk

i , and parity pk
i (see eqs. (1)-(4)), as well as

pairing energies ∆k
i . Using these pairing energies, we can

then consider two different approximations to account for
pairing effects in LDs:

i) The simplest method consists in using the microscopic
counterparts of the empirical energy correction δ, de-

fined as
∆p = ∆2

1 , for protons (23)

and
∆n = ∆4

1 , for neutrons, (24)

which both represent microscopic values of the dif-
ferences between the energy of first p-h excitation
when pairing correlations are accounted for and ig-
nored. As can be seen in fig. 1, the HFB + D1S ∆n

and ∆p-values, shown as crosses and circles, respec-
tively, behave roughly like the empirical pairing shift
δ = 12/

√
A, but important deviations are found, es-

pecially for nuclei with numbers of protons and/or
neutrons close to magic numbers. As mentioned pre-
viously, ∆n and/or ∆p are found to be negligible for
such nuclei. Therefore, this first approach enables us to
replace the systematic pairing shift when it is known
to be too strong. However, it cannot account for the
different shift that should be applied to particle-hole
excitations involving single-particle states close to, or
far from the Fermi level.

ii) The second method enables us to study the aforemen-
tioned problem, as we now explain. We calculate the
cumulated number of states NN (E) given by

NN (E) =
∑
M

∑
P

NN (E,M,P ) ,

where NN (E,M,P ) is defined in subsubsect. 2.1.4,
for the three configurations N = (1, 1, 0, 0), N =
(0, 0, 1, 1) as well as N = (1, 1, 1, 1), with and with-
out accounting for pairing correlations. Pairing cor-
relations are treated explicitly by changing the holes
states energies εk

i (k = 2 for protons and 4 for neu-
trons) into

√
(εk

i )2 + (∆k
i )2. One can then easily de-

duce (see fig. 2(a) for the N = (1, 1, 0, 0) configura-
tion) the pairing shift ∆N (U) between the unpaired
cumulated number of states Nunpaired

N and the paired
one Npaired

N as a function of the excitation energy U .
Three energy-dependent shifts (i.e., ∆p(U) for the pro-
ton configuration N = (1, 1, 0, 0), ∆n(U) for the neu-
tron configuration N = (0, 0, 1, 1) and ∆p+n(U) for
the proton-neutron configuration N = (1, 1, 1, 1)) are
thus calculated. These shifts are then used for all the
particle-hole configurations considered in the calcula-
tions, following the aforementioned assumption that
once a pair has been broken, the nucleus behaves like
in the IPM. In other words, the pairing shift used
to account for pairing correlations in any configura-
tion N = (Nπ, Nπ, Nν , Nν) is ∆p(U), if Nν = 0 and
Nπ �= 0, ∆n(U), if Nπ = 0 and Nν �= 0 and ∆p+n(U), if
both Nν �= 0 and Nπ �= 0. For instance, let us consider
the proton particle-hole configuration N = (3, 3, 0, 0).
The associated unpaired number of cumulated states
Nunpaired

N vanishes below a given threshold UN . To ac-
count for the pairing effect at a given excitation energy
U , we apply the procedure illustrated by fig. 2(b), and
write

Npaired
N (U) = Nunpaired

N (U − ∆p(U − UN )). (25)
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Fig. 2. Comparison between the calculated number of levels up
to an excitation energy E with (full line) and without (dotted
line) pairing as a function of the excitation energy E. (a) The
proton configuration N = (1, 1, 0, 0) for 238U is considered.
The shift ∆p(Ueff

1 ) is the energy difference U2 − U1, where
U1 and U2 are such that Nunpaired

N (U1) = Npaired
N (U2). The

effective excitation energy is given by Ueff
1 = U1 − U(1,1,0,0),

where U(1,1,0,0) is the threshold below which N(1,1,0,0) = 0.

(b) The way Npaired
(3,3,0,0) is deduced from Nunpaired

(3,3,0,0) for 238U is

shown. In this case Ueff = U − U(3,3,0,0).

Finally, the state density ρpaired
N is deduced from the

calculated Npaired
N -values following the method de-

scribed previously in subsubsect. 2.1.4.

4 Ingredients for actual calculations

In this section we discuss the main features of the nu-
clei under study and inputs to our calculations. We first
explain how the HFB + D1S single-particle levels are ob-
tained and then describe the way the vibrational states
are accounted for. Finally, we discuss the method used
to account as well for the rotational motion of deformed
nuclei.

4.1 HFB + D1S intrinsic single-particle states

As indicated in sect. 1, we only consider the 65 even-even
nuclei for which experimental data at Bn are given in
ref. [66]. The HFB + D1S method is used to determine the
single-particle level schemes used in eqs. (1)-(4) to define
particle and hole states. All the nuclei considered in our
study are described using the unconstrained HFB + D1S
method which consists in minimizing the nuclear ground-
state energies with respect to the axial deformation pa-
rameter β defined as

β =
√

π

5

〈
QM

20

〉
AR2

,

where
〈
QM

20

〉
is the mass quadrupole moment, and where

R2 = 3/5r2
0A

2/3 with r0 = 1.2 fm.
The proton and neutron single-particle level schemes

used in our combinatorial approach are obtained for the
deformations β0 which yield the lowest HFB energies. As
mentioned previously, the BCS-like approximation dis-
cussed in ref. [39] is used only to obtain single-particle
energies as well as single-particle pairing energies.

4.2 Vibrational states

To compute the vibrational intrinsic level densities, it is
necessary to know the energies of the phonon states en-
tering eq. (19). For this purpose, we use the experimental
values taken from ref. [67] and shown in table 2.

As pointed out in subsect. 2.2, λ-multipole phonons in
spherical nuclei are (2λ+1)-fold degenerate. Therefore, to
form only one set of experimental data for both spherical
and deformed nuclei under consideration, we have put in
column “β” the quadrupole phonon energy and left empty
column “γ” for spherical nuclei.

The way these data are used to calculate ρi∗v depends
upon whether the nucleus is spherical or deformed:

i) For spherical nuclei, we assume that the first 2+ and
3− excited levels are associated with the quadrupole
and octupole mode energies, respectively. Because of
spherical symmetry, each mode with multipolarity λ is
(2λ + 1)-fold degenerate.

ii) For deformed nuclei, two kinds of quadrupole vibra-
tion are observed, namely β and γ vibrations. The
quadrupole mode energies are chosen as the first 0+

excited level energy for the β vibration, and the first
2+ (belonging neither to the β vibrational nor to the
ground-state bands) for the γ vibration. Concerning
the octupole modes, the problem is more complicated.
Indeed, for light nuclei, only the (λ, µ) = (3,±3)
modes are experimentally observed. In contrast, for
nuclei with masses A > 150, the levels associated
with the (λ, µ) = (3,±2), (3,±1) and (3, 0) modes are
rather well established, while those associated with the
(λ, µ) = (3,±3) mode are not unambiguously identi-
fied. For instance, in ref. [68], the octupole (λ, µ) =
(3,±3) level is predicted above 6 MeV of excitation en-
ergy in the rare-earth mass region, whereas in ref. [69]
it is assumed to have an excitation energy between 1
and 2.5 MeV. Because of this ambiguity, we have in-
cluded, in table 2, the (λ, µ) = (3,±3) modes with
the energies found in refs. [67,69]. Indeed, if we as-
sume that these modes are located above 6 MeV, it
will certainly not influence our level density calcula-
tions up to Bn and it is therefore not necessary to
include the (λ, µ) = (3,±3) terms in eq. (19). In con-
trast, if we assume these modes at excitation energies
below 2.5 MeV, we will use, in eq. (19), the excitation
energies of table 2. Another ambiguity has been men-
tioned concerning the fact that, in the transitional re-
gion from spherical to well-deformed nuclei (146,148Nd
and 148Sm), the assumed KP = 1− octupole band
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Table 2. Phonon energies in MeV. Brackets are added when
band head levels energy or collective character is uncertain.

Z N λ = 2 λ = 3

β γ 0 1 2 3

12 14 3.59 2.94 6.88
16 18 3.92 3.30 4.62
20 24 1.16 3.31
22 26 3.00 2.42 3.36
22 28 1.55 4.15
24 30 2.83 2.62 4.13
26 30 2.94 2.65 4.51
28 32 2.29 2.16 4.04
28 34 2.05 2.30 3.76
30 38 1.66 1.88 2.75
32 42 1.48 1.20 2.54
34 44 1.50 1.31 2.51
38 50 1.84 2.73
40 52 0.93 2.34
42 54 0.78 2.23
42 56 0.74 1.43 2.02
44 56 1.13 1.36 2.17
44 58 0.94 1.10 2.04
44 60 0.99 0.89 1.97
46 60 1.13 1.13 2.08
46 62 1.05 0.93 2.05
46 64 0.95 0.81 2.04
48 64 1.22 1.31 2.01
48 66 1.13 1.21 1.96
50 66 1.29 2.27
50 68 1.23 2.33
50 70 1.17 2.40
52 72 1.66 1.33 2.29
52 74 1.87 1.42 2.39
54 76 1.79 1.12 2.40
54 78 [1.8] 1.30 2.47
54 82 1.31 3.28
56 80 0.82 2.53
56 82 1.44 2.88
60 84 0.70 1.51
60 86 0.92 1.47 [1.3] 1.19
60 88 0.92 1.25 [1.0] 1.00
62 86 [1.4] [1.4] [1.4] 1.16
62 88 0.74 1.05 1.16 [1.7] 1.07
62 90 0.69 1.09 [0.9] [1.5] [1.6] [2.0]
64 92 1.05 1.15 [1.3] 1.24 1.78 [1.9]
64 94 1.20 1.19 [1.2] 0.98 1.79 [1.7]
66 96 1.40 0.89 [1.2] 1.64 1.15 1.57
66 98 1.66 0.76 [1.6] 1.64 0.98 [1.7]
68 100 1.22 0.82 [1.7] 1.36 1.57 1.54
70 102 1.04 1.47 1.58 1.16 1.76 [2.0]
70 104 1.49 1.63 1.70 [1.2] 1.32 1.85
72 106 1.20 1.18 [1.7] 1.31 1.26 [1.8]
72 108 1.10 1.30 [2.0] [1.4] [1.3] [1.3]
74 110 1.00 0.90 [1.7] [1.6] 1.13 1.81
76 112 1.09 0.63 [1.7] [1.5] [1.4] 1.41
76 114 0.91 0.56 [1.9] [1.8] [1.6] 1.39
78 118 1.14 0.69 1.45
80 120 1.03 1.57 2.61
80 122 1.56 0.96 2.71
82 126 4.09 2.62

Table 2. Continued.

Z N λ = 2 λ = 3

β γ 0 1 2 3

90 140 0.64 0.78 0.50 0.95 1.08 [1.5]
92 142 0.81 0.93 0.77 [0.9] 0.99 [1.3]
92 144 0.92 0.96 0.68 [0.9] 1.11 [1.1]
92 146 0.99 1.06 0.67 [0.9] [1.1] [1.4]
94 146 0.86 1.14 0.59 0.94 1.24 [1.2]
94 148 0.96 1.10 0.77 [1.0] [1.1] [1.2]
96 148 0.99 1.08 [1.1] [1.0] [0.7] [1.2]
96 150 1.17 1.00 [1.2] [1.0] [0.7] [1.3]
96 152 1.08 1.00 [1.2] [1.1] [0.7] [1.3]
98 152 1.15 1.00 [1.3] [1.1] [0.9] [1.2]

head state (see table 2) is uncertain and can instead
be interpreted as stemming from the coupling bet-
ween one-quadrupole and one-octupole phonons [57–
59]. Our goal here is certainly not to discuss such am-
biguities. We will therefore simply include, in eq. (19),
the octupole modes using the excitation energies of ta-
ble 2.

4.3 Rotational bands and moments of inertia

The last important ingredients needed for our calculations
are the moments of inertia. We have seen in subsect. 3.1
that the only value needed in our model was the rota-
tional energy EJ,K

rot . Following the usually employed an-
alytical formulae relevant to axially symmetric nuclei for
EJ,K

rot [35], we write

EJ,K
rot =

J(J + 1) − K2

2J⊥
. (26)

In this equation, J⊥ is the moment of inertia of a nucleus
rotating around an axis perpendicular to the symmetry
axis. This moment of inertia is calculated in the Inglis-
Belyaev approximation [70,71] from the HFB + D1S self-
consistent mean-field solutions and renormalized as indi-
cated in [45]. It is from now on labeled as J D1S

⊥ . The value
taken by J D1S

⊥ is in good agreement with experimental
data [45] and, as expected, is found to be systematically
lower than the rigid-body value J rigid

⊥ which reads

J rigid
⊥ =

2
5
mR2

(
1 +

√
5

16π
β

)
,

for an ellipsoidal shape with axial quadrupole deformation
parameter β [66]. In this definition, m is the nucleus mass
and R = 1.2A1/3 (fm) the nuclear radius. We will therefore
use both J D1S

⊥ -values and J rigid
⊥ -values evaluated for β =

β0 (see subsect. 4.1) to calculate EJ,K
rot and discuss how

these values affect our combinatorial results. It is worth
mentioning here that the stronger the pairing field, the
lower J D1S

⊥ is.
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It is clear that the rotational energy given by eq. (26)
modifies the position of the band head states with K �= 0.
Indeed, if an intrinsic state KP is found at an energy EK

in the nucleus intrinsic frame, the corresponding level in
the laboratory frame is shifted up by the zero-point ro-
tational energy K/2J⊥. Therefore, the vibrational ener-
gies of table 2 must be shifted down when used in our
level density calculations to account for this effect. For
the (λ, µ) = (3, 0) mode, the energy is obtained by ex-
trapolating the experimental sequence of 1−, 3− and 5−
levels.

5 Comparisons with experimental data

This section is devoted to the analysis of the predictions
based on our combinatorial approach. We first compare in
subsect. 5.1 the results obtained using various assumptions
described in sect. 4 with experimental data for excitation
energy U of the order of the neutron binding energy Bn.
In particular, we study the effect of several treatments of
pairing corrections as well as the role played by the vibra-
tional and rotational effects on our predictions. Our goal is
to analyze the various approximations of our approach, to
see which ones have the strongest influence on the predic-
tions. We then compare in subsect. 5.2 our combinatorial
results for U � Bn where discrete levels are experimen-
tally observed.

5.1 Average level spacings for U ≈ Bn

5.1.1 Definitions

The most often used experimental data in level density
studies is the density of s-wave neutron resonances. When
one considers a reaction between a target of spin Jt and
parity πt and an incident neutron with low energy, one
observes resonances in cross-sections which reflect the ex-
istence of excited levels in the compound nucleus. For s-
wave (i.e., � = 0) resonances the relationship between the
mean spacing D0 of these resonances and the level density
of the compound nucleus is thus

D0 ≈ [ρ(Bn + W/2, Jt + 1/2, πt)

+ ρ(Bn + W/2, Jt − 1/2, πt)]
−1 , (27)

if Jt �= 0, and

D0 ≈ [ρ(Bn + W/2, 1/2, πt)]
−1 , (28)

otherwise. In these equations, W is the energy width used
to determine the experimental D0-values. It is generally
of the order of 1 keV except for closed-shell nuclei or light
nuclei where it is rather of the order of several tens of keV
[72]. When W is large, derived theoretical D0-values might
be different depending upon whether W is accounted for
or not. To check whether this is true or not, we have
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Fig. 3. (a) Mean spacing D0 of the s-wave neutrons resonances
at Bn as a function of the atomic mass. The circles represent
the experimental D0-values of ref. [66] (the line is only used to
guide the eye). (b) Ratio between calculated and experimental
D0-values. In both panels, the full squares (respectively the
stars) represent the results obtained with (respectively with-
out) inclusion of the quadrupole and octupole phonons.
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Fig. 4. Ratio between calculated and experimental D0-values.
The full squares (respectively the stars) represent the results
obtained with the microscopic HFB + D1S pairing correction
and three (respectively one) coupled phonons.
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Fig. 5. Ratio between calculated and experimental D0-values.
The full squares (respectively the stars) represent the results
obtained with a decreasing (respectively constant) microscopic
HFB + D1S pairing correction when the excitation energy in-
creases (see subsect. 3.2 for more details).

extracted theoretical D0-values using the W -values tab-
ulated in [72] and compared them with theoretical D0-
values obtained assuming W = 0. It appears that account-
ing or not for W yields differences for the theoretical D0-
values which are of the order of the size of the points in
figs. 3-5.
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Table 3. Nuclei parameters. Jπ is the target spin. Bn in MeV,
and D0 in eV.

Z N Bn Jπ D0 β0

12 14 11.09 5/2+ (55 ± 17)103 −0.31
16 18 11.42 3/2+ (27 ± 10)103 −0.17
20 24 11.13 7/2− (2.6 ± 0.4)103 0.00
22 26 11.63 5/2− (1.6 ± 0.4)103 0.14
22 28 10.94 7/2− (3.6 ± 0.9)103 0.00
24 30 9.72 3/2− (5.7 ± 2.0)103 0.22
26 32 10.05 1/2− (5.9 ± 1.5)103 0.22
28 32 11.39 3/2− (1.4 ± 0.3)103 −0.15
28 34 10.56 3/2− (1.4 ± 0.2)103 −0.20
30 38 10.20 5/2− 290 ± 30 −0.14
32 42 10.20 9/2+ 93 ± 10 0.17
34 44 10.50 1/2− 110 ± 20 0.15
38 50 11.11 9/2+ 121 ± 13 0.00
40 52 8.64 5/2+ 300 ± 80 0.00
42 54 9.15 5/2+ 91 ± 11 0.00
42 56 8.64 5/2+ 78 ± 10 0.07
44 56 9.67 5/2+ 34 ± 7 0.19
44 58 9.22 5/2+ 18 ± 2 0.20
44 60 8.90 3/2+ 7.5 ± 3.8 0.27
46 60 9.56 5/2+ 13.3 ± 1.7 0.20
46 62 9.22 5/2+ 12 ± 2 0.21
48 64 9.40 1/2+ 26 ± 4 0.17
48 66 9.04 1/2+ 27 ± 3.5 0.18
50 66 9.56 1/2+ 44 ± 22 0.00
50 68 9.33 1/2+ 45 ± 10 0.00
50 70 9.11 1/2+ 62 ± 12 0.00
52 72 9.43 1/2+ 18 ± 4 0.15
52 74 9.11 1/2+ 38 ± 3 0.15
54 76 9.26 1/2+ 32 ± 3 0.11
54 78 8.94 3/2+ 40 ± 15 0.11
54 82 8.06 3/2+ 500 ± 100 0.00
56 80 9.11 3/2+ 35 ± 9 0.00
56 82 8.61 3/2+ 200 ± 65 0.00
60 84 7.82 7/2− 36.5 ± 4 0.00
60 86 7.57 7/2− 17 ± 1.6 0.16
60 88 7.33 5/2− 5 ± 2 0.21
62 86 8.14 7/2− 5.7 ± 0.5 0.16
62 88 7.99 7/2− 2.5 ± 0.25 0.21
62 90 8.26 5/2− 1.3 ± 0.2 0.32
64 92 8.54 3/2− 1.6 ± 0.16 0.33
64 94 7.94 3/2− 4.9 ± 0.4 0.34
66 96 8.20 5/2+ 2 ± 1.2 0.35
66 98 7.66 5/2− 5 ± 0.8 0.35
68 100 7.77 7/2+ 3 ± 0.5 0.35
70 102 8.02 1/2− 5.8 ± 0.5 0.34
70 104 7.47 5/2− 7.8 ± 0.9 0.34
72 106 7.63 7/2− 2.4 ± 0.3 0.30
72 108 7.39 9/2+ 3.8 ± 0.38 0.29
74 110 7.41 1/2− 12 ± 1 0.25
76 112 7.99 1/2− 4.4 ± 0.2 0.22
76 114 7.79 3/2− 3.3 ± 0.2 0.19
78 118 7.92 1/2− 18 ± 3 0.13
80 120 8.03 1/2− 84 ± 18 −0.10
80 122 7.75 3/2− 110 ± 20 −0.07
82 126 7.37 1/2− (19 ± 6)103 0.00
90 140 6.79 5/2+ 0.53 ± 0.15 0.25
92 142 6.84 5/2+ 0.55 ± 0.05 0.27

Table 3. Continued.

Z N Bn Jπ D0 β0

92 144 6.55 7/2− 0.44 ± 0.06 0.28
92 146 6.15 1/2+ 3.5 ± 0.8 0.28
94 146 6.53 1/2+ 2.3 ± 0.1 0.29
94 148 6.31 5/2+ 0.9 ± 0.1 0.29
96 148 6.80 5/2+ 0.81 ± 0.1 0.30
96 150 6.46 7/2+ 1.9 ± 0.8 0.29
96 152 6.21 9/2− 1.4 ± 0.3 0.29
98 152 6.63 9/2− 0.7 ± 0.1 0.30

Since we only deal here with even-even compound nu-
clei, we use eq. (27) to compare the experimental D0-
values with those deduced from our combinatorial ap-
proach. At the present stage, our predictions only depend
on the arbitrary energy unit ε0 (see eq. (14)) used in the
discretization of the excitation energies. It is clear that
the higher ε0, the less accurate our calculations are. More-
over, ε0 must be of the order of the width W appearing in
eqs. (27) and (28). We have therefore adopted the value
ε0 = 10 keV, as mentioned previously in subsubsect. 2.1.4.

We show in table 3 the list of Z and N -values rele-
vant to the even-even compound nuclei considered in our
study, the experimental D0-values taken from ref. [66], as
well as the axial deformation parameter β0 obtained from
our HFB + D1S microscopic mean-field calculations. Of
course, other tabulations of experimental D0-values can
be found in the literature with, sometimes quite impor-
tant differences, especially for light or nearly magic nu-
clei. For example, differences within a factor 2-3 exist for
such nuclei between the compilations in refs. [66] and [72].
However, changing the set of experimental data does not
significantly modify the overall comparisons that follow in
figs. 3-5, since such important differences only concern a
very small number of nuclei among the 65 nuclei consid-
ered in the present study.

5.1.2 Quadrupole and octupole isoscalar vibrations

We first study the specific role played by the vibrational
states. For this purpose, we compare in fig. 3 the results
obtained by shifting the microscopic intrinsic state densi-
ties with the constant HFB + D1S pairing energy with and
without inclusion of both quadrupole and octupole vibra-
tional states. The number of coupled phonons considered
in this case is equal to two, and the microscopic moments
of inertia J D1S

⊥ are used to construct the rotational bands
for deformed nuclei.

As can be seen, ignoring the vibrational states leads
to an overall overestimate of the experimental D0-values.
The only exception is for the mass regions 120 < A < 144
and A ≈ 200, where the experimental data are quite
well reproduced. For 208Pb, the calculation of D0(Bn) is
even impossible when vibrational states are ignored since
no levels with correct spin and parity (i.e., 0− and 1−)
are here predicted below 8.5 MeV. Including the vibra-
tional states clearly improves the overall agreement be-
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tween experimental and theoretical D0-values, even if the
global overestimate persists. Of course, for the mass re-
gions where a good agreement was obtained without con-
sidering the vibrational states, the level density is now too
high. This discrepancy may be due to the assumed axial
symmetry which is known to be broken for nuclei close to
sphericity such as 124,126Te, 130,132Xe, 136Ba, 144Nd as well
as 196Pt and 200,202Hg. In fact, these nuclei are rather soft
against triaxial deformation and it is thus not surprising
that our model predictions break down. However, further
work is needed to treat such nuclei and verify the latter
statement.

In order to measure the quality of the predictions, we
use the mean square deviation factor f defined as

f = exp


 1

Nexp

Nexp∑
i=1

(
ln

Di
calc

Di
exp

)2



1/2

, (29)

where Di
calc (respectively Di

exp) is the calculated (respec-
tively experimental) � = 0 mean resonances spacing for
the i-th nucleus, and Nexp is the total number of nuclei
under consideration. We then get f = 7.25, when vibra-
tional states are included, to be compared with f = 32.62
obtained without including vibrational states.

Finally, one can observe overestimates in the rare-earth
and actinide mass regions, as well as for spherical nu-
clei (for A ≈ 90, 120, 140, 208). In the latter case, mul-
tiphonons vibrational states with N ≥ 3 are believed to
occur because of the spherical symmetry. Therefore, we
have increased the number of coupled phonons in the cal-
culations to see how this affects our predictions.

5.1.3 Multiphonons

As mentioned in subsect. 2.2, the number of phonons
which may be coupled is limited for physical reasons. Ex-
perimentally, two-phonon states are well established [52–
63], and possible three-phonon states have also been con-
sidered [73,74]. We therefore study in fig. 4 the influence
of a variation in the number of coupled phonons on our
predictions.

As can be seen, the larger the number of coupled pho-
nons, the better the overall agreement between theoretical
predictions and the experimental data is. For 1, 2 and 3
coupled phonons, the deviation factor (29) is 11.25, 7.24
and 6.27, respectively. One can however still notice a per-
sistent and significant disagreement in the rare-earth and
actinide mass regions as well as for spherical nuclei. Con-
cerning the nuclei for which the level density was previ-
ously overestimated, the increase in the number of coupled
phonons has of course not improved the agreement be-
tween theoretical and experimental D0-values, but the dif-
ferences obtained when considering two (see fig. 3) or three
coupled phonons (see fig. 4) are not significant. Therefore,
the number of coupled phonons is probably not the most
crucial point to improve our predictions. In fact, according
to Soloviev [75], such overestimates might be explained by

the fact that vibrational modes with multipolarity λ dif-
ferent from 2 and 3 have not been accounted for in our
approach. For instance, for spherical nuclei, one could try
to include λ = 5 vibrational states. In the rare-earth and
actinide mass regions, magnetic dipole modes which have
been observed for excitation energies between 2 and 3 MeV
[76–84], could also have an influence on our predictions.

5.1.4 Dipole and hexadecapole vibrational modes

In order to evaluate the effect of missing vibrational states
with multipolarity different from 2 or 3, we have included
in the rare-earth and actinide regions the magnetic dipole
(usually known as scissor) mode which has been well stu-
died [76–84] since its discovery in 1984 [85]. The improve-
ment obtained is typically of the order of 10 percent (the
deviation factor now becomes f = 6.11 instead of 6.27).
This result is not significant enough to be appreciated on
a plot. The weak effect of these states could be a con-
sequence of their relatively high excitation energy when
compared to that for quadrupole and octupole vibrations.
We therefore believe that inclusion of other multipole
states, such as hexadecapole states, could have a more
significant effect on our predictions. Indeed, in the mass
regions A ≈ 170, for instance, hexadecapole states have
been observed with low excitation energy (of the order of
1.5 MeV) [86–89], and could thus have a stronger influence
than the magnetic dipole modes. The same remark holds
true for closed-shell nuclei [90] where the strong overesti-
mate of our predictions observed in figs. 3, and 4 could
also be reduced in the same way.

We have tried to account for such states assuming all
hexadecapole modes located at 2 MeV, for the actinides of
table 2. As expected, the level densities increase and con-
sequently the theoretical D0-values get closer to the ex-
perimental values. On the average, theoretical values are
reduced by almost a factor 2, which is however not enough
to obtain a perfect agreement with experimental data. It
is therefore necessary to study the other key ingredients of
our approach, that is to say, the rotational band construc-
tion and the pairing treatment that we have used before
concluding whether including more vibrational states is
the key ingredient to obtain a better agreement with ex-
perimental data.

5.1.5 Rigid versus superfluid moments of inertia

Until now, we have used microscopic moments of inertia
deduced from HFB + D1S calculations. It is however well
known that the moment of inertia increases with excita-
tion energy as the consequence of gradual weakening of
pairing correlations. We have thus performed the same
D0 calculations as in the previous paragraph, this time
with the rigid-body values J rigid

⊥ for the moments of iner-
tia used to build rotational bands. This rigid-body value
is about 2 or 3 times bigger than J D1S

⊥ . However, the re-
sults in this case are not very different from those obtained
using J D1S

⊥ . Indeed, the calculated mean spacings using
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J rigid
⊥ are only about 1 percent lower than those predicted

when J D1S
⊥ is employed. It is therefore clear that the value

of the moment of inertia is not of key importance to im-
prove significantly the agreement between experimental
and theoretical D0-values at Bn.

5.1.6 Energy-dependent pairing correction

We now study the results obtained using the method de-
scribed in subsect. 3.2 to account for the decrease of the
pairing shift when the excitation energy increases. The
results obtained are plotted in fig. 5 and compared with
those obtained with the constant HFB + D1S shift (see
fig. 1). In this figure, three coupled phonons are conside-
red.

As can be seen, a little improvement is obtained but
the overestimate in the rare-earth and actinide mass re-
gions persists. The observed improvement is stemming
from the fact ∆combi

HFB is always weaker than the constant
HFB + D1S shift of fig. 1 and, consequently, the level den-
sities (respectively D0-values) calculated using ∆combi

HFB are
stronger (respectively weaker) than when the constant
HFB + D1S shift is employed. The improvement is partic-
ularly significant for A ≈ 120, the mass region which cor-
responds to the three spherical nuclei 116,118,120Sn. The
deviation factor is now f = 4.55. Therefore, using the
energy-dependent pairing correction ∆combi

HFB introduced in
subsect. 3.2 appears to play a more important role than
coupling three instead of two phonons.

To further investigate the quality as well as the be-
havior of our combinatorial energy-dependent pairing cor-
rection ∆combi

HFB , we compare it, in fig. 6, with the widely
employed analytical approximation [91] of the energy-
dependent pairing correction ∆SM of the superfluid model
approach [26,27], and with ∆temp

HFB obtained from temper-
ature dependent HFB + D1S calculations for 230Th. The
choice of 230Th is simply due to the fact that for such
a heavy nucleus, the single-particle states density around
the Fermi level is high, so that the shell structures are less
important for low excitation energies.

The ∆temp
HFB -values are obtained, for a given temper-

ature, with the help of eqs. (23) and (24) for protons
(fig. 6(b)) and neutrons configurations (fig. 6(c)), respec-
tively, and by summing these values for proton-neutron
configurations (fig. 6(a)). The excitation energy corre-
sponding to a given temperature is simply given by the
difference between the nucleus binding energy correspond-
ing to that temperature and the binding energy obtained
for a zero temperature. Concerning the ∆SM-values, they
are obtained using the method described in ref. [91] with
a level density parameter given by the Ignatyuk et al. for-
mula [33] and are only plotted here to guide the eye with
the widely used model of ref. [91]. These values should
certainly not be considered as absolute references ensur-
ing the reliability of the microscopic ∆temp

HFB -values. On the
contrary, the parameters required to calculate the ∆SM-
values have been taken such that the analytic approxi-
mation reproduces roughly the behavior of ∆temp

HFB -values,
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Fig. 6. Comparison between our pairing shift ∆combi
HFB (full

squares), the energy-dependent pairing correction obtained
in the superfluid model approach ∆SM (full line) and
temperature-dependent pairing energy ∆temp

HFB (dashed lines
with stars) for 230Th. The three panels (a), (b) and (c) cor-
respond to the shift applied to proton-neutron, proton and
neutron configurations, respectively.

which suggests that the approximation of ref. [91] is ap-
propriate to describe reasonably well a more realistic the-
oretical (but much more time consuming) approach.

It is interesting to notice in fig. 6 that, whereas the an-
alytic approximation to the superfluid model [91] does not
distinguish between proton and neutron ∆SM-values, our
approach, as well as the temperature-dependent approach
does. Moreover, apart from the low-energy oscillations of
∆combi

HFB due to the discrete nature of the one-particle–one-
hole excitations, ∆combi

HFB and ∆temp
HFB display rather simi-

lar behaviors for low excitation energies. However, both
∆temp

HFB and ∆SM vanish above a given critical energy Ucrit

(which is here of the order of 4 MeV) while ∆combi
HFB does

not. The reason is that, in our approach, the ∆k
i -values

used to determine ∆combi
HFB (see subsect. 3.2) are calculated

for a zero temperature, and therefore never vanish even
if they become negligible with respect to the εk

i -values
(which explains the observed decrease of ∆combi

HFB ). In other
words, the decrease of the pairing energy ∆temp

HFB as a func-
tion of excitation energy is well reproduced by our zero-
temperature approximation for excitation energies below 2
or 3 MeV, but the shift we apply, using ∆combi

HFB , to particle-
hole states with excitation energy higher than Ucrit is too
strong. It is therefore clear that using ∆temp

HFB instead of
∆combi

HFB will enhance the improvement already obtained by
introducing ∆combi

HFB instead of a constant pairing shift.
Consequently, we are planning to use ∆temp

HFB instead of
∆combi

HFB in our combinatorial approach to see how the theo-
retical D0-values would compare with experimental data.
However, such an extension would require time consum-
ing calculations, and would go beyond the scope of the
present work.
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Fig. 7. Comparison between experimental and calculated histograms of cumulated discrete levels when JD1S
⊥ is used to build

the rotational bands. The dashed lines represent the experimental data and the full lines our predictions.

5.2 Cumulated discrete levels at low energy

Since we have seen that the pairing correction that we use
is good enough to describe the low-energy pairing effects
on level densities, we now compare the results obtained
with our combinatorial approach for low excitation ener-
gies when discrete levels are experimentally observed. For
this purpose, we plot in figs. 7 and 8 histograms for both
experimental and theoretical cumulated discrete levels of
58Fe, 104Ru, 168Er, and 230Th.

In fig. 7, the theoretical histograms (full lines) have
been obtained using the microscopic moment of inertia
J D1S
⊥ , whereas in fig. 8, J rigid

⊥ has been adopted to build
the rotational bands. Also, in both figures three phonons
have been coupled and the energy-dependent microscopic
pairing correction (see subsect. 3.2) has been used. It is
clear that the number of coupled phonons is not of key im-
portance in these figures, since we study a very low excita-
tion energy region where only one coupled phonon must be
considered. As can be seen, the combinatorial approach re-
produces quite well the experimental data (dashed lines).
Furthermore, comparing fig. 7 and fig. 8, one can notice
that using J D1S

⊥ leads to better agreements than with
J rigid
⊥ at low energy. However, it is interesting to notice

that for 168Er, for which the levels spectroscopy is ex-
pected to be almost complete up to 2.5 MeV, our predic-

tions underestimate the experimental data above 1 MeV
when J D1S

⊥ is used, while the experimental data are over-
estimated if J rigid

⊥ is employed. This observation suggests
that the agreement between predictions and experimen-
tal data might be improved by accounting for the energy
dependence of the moment of inertia, but further compa-
risons are required to draw a definite conclusion on this
issue.

Above a few MeV of excitation energy, the experimen-
tal resolution is not good enough to identify all the dis-
crete levels, which results in a saturation of the experimen-
tal histogram. This is why there is a strong disagreement
above a few MeV between our results and the experimen-
tal data.

6 Conclusions

An accurate combinatorial approach permitting calcula-
tions of both particle-hole and total level densities as func-
tions of energy, spin and parity has been presented. This
method, which relies upon the adiabatic approximation,
has been implemented using the single-particle spectra
provided by Hartree-Fock-Bogoliubov microscopic calcu-
lations based on the D1S Gogny effective interaction per-
formed for 65 even-even nuclei. It has been shown that it
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Fig. 8. Comparison between experimental and calculated histograms of cumulated discrete levels when J rigid
⊥ is used to build

the rotational bands. The dashed lines represent the experimental data and the full lines our predictions.

is possible to reproduce reasonably well the experimen-
tal data on level densities for excitation energies close
to the neutron binding energy, provided that the vibra-
tional and rotational enhancements were accounted for.
At low excitation energy, this method has also proved
its power to reproduce rather well the cumulated dis-
crete level histograms. Such a predictive power should be
very interesting to determine low-energy level density laws
—which play a crucial role in compound nucleus cross-
section calculations— when no experimental information
is available, especially for nuclei far from the valley of sta-
bility. For such nuclei, the required vibrational-mode en-
ergies would be predicted from solving a collective Hamil-
tonian built from HFB + D1S calculations, as explained in
ref. [45].

However, some discrepancies remain between measure-
ments and predictions for excitation energies close to the
neutron binding energy. Indeed, a systematic overestimate
of the mean spacing of s-wave neutron resonances is ob-
served for the rare-earth and actinide mass regions. Seve-
ral explanations are possible:

i) First, a better knowledge of the octupole mode ener-
gies as well as inclusion of hexadecapole vibrational
modes (or/and modes with higher multipolarities) will
certainly improve the agreement of our predictions
with experimental data.

ii) Second, accounting for the so-called particle-vibration
coupling may also significantly modify the results. It
is indeed known that when vibrational states are ac-
counted for in self-consistent microscopic methods, the
gap between the last occupied and the first empty state
is reduced and the level density is consequently in-
creased. The higher the gap, the more this reduction
is important. This is probably the reason why the dis-
agreement between experimental data and our combi-
natorial results is so important for 208Pb as well as for
the A ≈ 90 and A ≈ 120 mass regions where important
gaps are known to occur.

iii) Finally, as mentioned in subsubsect. 5.1.6, the treat-
ment of pairing correlations that we have considered
has to be improved, to account for the known vanishing
of pairing effects above a critical excitation energy [26,
27]. Indeed, it has been shown that energy-dependent
pairing shift improve significantly the quality of our
predictions, and the agreement will certainly be better
if the vanishing of pairing effect is more correctly ac-
counted for. We believe that such an improvement is
of crucial importance before studying deeper the two
aforementioned effects. We hope to report on this issue
in the near future.

Another issue is the energy dependence of the mo-
ment of inertia used to build the rotational bands in de-
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formed nuclei [92,93]. If the moments of inertia yielded
by HFB + D1S microscopic calculations are rather realis-
tic for the first discrete levels, it is also known that they
are too weak when the excitation energy increases and
should also be modified because of the energy dependence
of the nucleus deformation. However, this point is diffi-
cult to study for excitation energies close to the neutron
binding energy since the modification of the s-wave neu-
tron resonances mean spacings is only of the order of 1
percent when the rigid-body values are used instead of
the superfluid ones. Such an effect could only be studied
with experimental data covering a wide enough excitation
energy range.

Last, but not least, it is important to remember that all
our combinatorial results rely on the single-particle levels
properties obtained from Hartree-Fock-Bogoliubov calcu-
lations based on the D1S Gogny force. Therefore, it would
be interesting to perform similar studies using other effec-
tive forces.

Our method has not yet been applied to odd or odd-
odd nuclei. It is thus a challenge to see if the overall agree-
ment here obtained for even-even nuclei could also be ob-
tained for odd and odd-odd nuclei. It would be also useful
to compare our microscopic approach with usually em-
ployed analytical formulae. Indeed, these analytical formu-
lae are fitted on scarce data which moreover never extend
beyond 10 MeV or so. Since our combinatorial approach
has proved its predictive power, we are planning to use
our results to study the energy behaviors of the level den-
sity parameter and of the parity distribution for instance.
In fact, the comparison of our results with those from the
extensively employed Ignatyuk et al. formula is presently
underway.

The authors are grateful to J.F. Berger for continuous encour-
agements and stimulating discussions.
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